Advanced Reactor Technologies

California Council on Science and Technology Sacramento

24 May 2006

Harold McFarlane

Deputy Associate Laboratory Director for Nuclear Programs

Idaho National Laboratory

&

Vice President / President-Elect American Nuclear Society

International nuclear electric production

			Number	% CF	% of Total Generation
		United States	103	92	20
		France	59	88	78
		Japan	52	70	25
		Russia	30	68	17
	*	Canada	21	64	13
		South Korea	20	92	40
7	¥;	China	9	84	2
**	**	Taiwan	6	88	22
\	®	Mexico	2	79	5

% of Nuclear Power Country to Total Output

International ranking of nuclear capacity as percentage of total electrical production

ho National Laboratory

	Country	io rotal oatpat	
	Lithuania	80	
	France	78	
	Slovakia	57	
	Belgium	55	
	Sweden	50	
	Ukraine	46	
	South Korea	40	
	Slovenia	40	
	Switzerland	40	
	Bulgaria	38	
	Armenia	35	
	Hungary	33	
	Czech Republio	31	
	Germany	28	
	Finland	27	
	Japan	25	
	Spain	24	
	U.K.	24	
	Taiwan	22	
	U.S.A.	20	
-			/

Current unit expansion in Asia/Europe

	Country	Operating Units	Number of Units Under Construction	Near-Term Plan (GWe)	By (year)
(a)	India	14	8	29.5	2022
	South Korea	20	6	26.6	2015
	Russia	30	4	40	2020
	Japan	52	3	15	2025
*‡	China	9	2	40	2020
	Ukraine	8	2	22	2030
C	Pakistan	2	_	8.5	2030
4	Iran	0	1	_	_
	Romania	1	1	_	
	Finland	4	1 28	760	<u> </u>

The Energy Policy Act of 2005

- Includes incentives for new nuclear plants
- Industry has responded with expressions of interest in 17 new nuclear reactors

Combined Licenses, Early Site Permits, and Standard Design Certifications

^{*} or equivalent process

New designs available today—Generation III+

Advanced Light Water Reactors (ALWRs)

 Standardized designs based on modularization producing shorter construction schedules

 Passive or redundant systems to enhance safety

Easier to protect from terrorist attacks

Gen-III+

Westinghouse

- AP 1000

 (1,148 MWe)
 - Passive safety systems
 - NRC design certification provides regulatory certainty:
 - AP 600—Approved December 1999
 - AP 1000—Approved early 2006

General Electric

 Economic Simplified Boiling Water Reactor ESBWR (1,550 MWe)

Passive safety systems

 Design certification ongoing, expected in 2008

 Designed to U.S. and European requirements

AREVA/Framatome ANP

 Evolutionary Power Reactor EPR (1,600 MWe)

Redundant safety systems

Preparing for certification

 European version under construction in Finland

 Design certification review to start in 2007; completion estimated in 2010

First movers for new nuclear plants

NRC's etimate of new plant licensing schedule

The new ALWR designs reverse the trend of increasing steel and concrete

Gen III - Active

Gen III+ - Passive

1970's PWR **1000 MWe** $40 \mathrm{\ MT}_{\mathrm{steel}}/\mathrm{MW}$

EPR 1600 MWe $49 MT_{steel}/MW$

ABWR 1380 MWe $51 \text{ MT}_{\text{steel}}/\text{MW} \quad \underline{\text{MT}_{\text{steel}}}/\text{MW} \quad 42 \text{ MT}_{\text{steel}}/\text{MW}$

ESBWR 1550 MWe

AP-1000 1090MWe

Scaled Comparison

AP-1000 has large reduction in components

Sue Ion, GLOBAL 2005

Generation IV Initiative – Mission

- International initiative under DOE leadership
 - DOE and other countries to plan next-generation nuclear technology R&D collectively.
 - Governed by Gen IV International Forum (GIF)

Vision

 Develop advanced nuclear technologies for deployment by 2030 in collaboration with GIF partners

Forward-looking technology goals established

Economics, safety, waste/sustainability, proliferation resistance and physical protection

• Gen IV Roadmap

 Identified fuel cycles and reactors to advance goals and serve future energy markets

GIF selected 6 concepts as most-promising

GFR -- Gas-cooled fast reactor LFR -- Lead-cooled fast reactor

VHTR -- Very high temperature reactor SFR -- Sodium-cooled fast reactor

SCWR -- Supercritical water-cooled reactor MSR -- Molten salt reactor

 U.S. now focused on Very-High-Temperature Reactor (VHTR) and Sodium Fact Reactor (SFR)

High-temperature Gen IV reactors may have multiple applications

- NGNP technology not fixed until 2011
- Strategy due to Congress 8/8/08
- Idaho National Laboratory to provide support
- Flexible licensing strategy

Next Generation Nuclear Plant (NGNP)

Sodium fast reactor development targets spent fuel management

R & D Objectives

- 200-MWt demonstration burner
- Cost reduction design features
- Co-located with processing facility
- Fuels and safety testing capability

Demonstration Focus Areas

- Prototypical recycled fuel
- Verification of safety performance
- Remote handling refueling equipment
- Economics for deployed power reactors

Toshiba 4S sodium cooled reactor targets small niche markets

- 10 MWe
- Designed for remote locations without much infrastructure
- No refueling over 30 year lifetime
- Reactivity control movable reflectors
- Passive safety
- NRC pre-application review pending
- Galena, Alaska?

Nuclear power for rural villages

Toshiba is proposing a small modular nuclear reactor to supply power for Galena, a Yukon River town of 713. It has yet to be constructed, but would likely consist of a 70-foot tube with a garbage-can-sized uranium core at the bottom and a liquid metal heat exchanger in the upper section. The assembly would be buried in a concrete silo. The slow-burning uranium would last 30 years, powering steam turbines to create electricity. Conceptual drawings of the plant are below.

- ELECTRICAL PRODUCTION: About 10 megawatts.
- A typical Lower 48 nuclear plant is 1,000 megawatts or more.

 When the fuel is spent, the core can be removed and recycled.
- ELECTRICAL COST: The plant could generate electricity at 10 cents a kilowatt hour, which is slightly more than in Anchorage or Fairbanks, but a half to two-thirds the current cost in Galena.
- CONSTRUCTION: The modular plant is constructed in a factory and could be delivered by barge to the site. Components are small enough to be delivered by truck or helicopter.
- PROJECT COST: \$20 million. Toshiba says it will install the Galena reactor free, as a demonstration project.
- NUMBER OF EMPLOYEES: The reactor has no operator or maintenance personnel; the steam generator would probably require the same number of people as the diesel-powered plants.

[Westinghouse] International Reactor Innovative and Secure (IRIS)

- Integral LWR (335 MWe)
- Safety by innovative design features and passive safety systems
- 3 4 year core
- Modular fabrication and construction
- Spherical Containment
- Generation IV Objectives
 - Proliferation Resistance
 - Enhanced Safety
 - Improved Economics
 - Reduced Waste
- NRC pre-application review underway

Idaho National Laboratory

